--- SEARCH ---
WEATHER
CHINA
INTERNATIONAL
BUSINESS
CULTURE
GOVERNMENT
SCI-TECH
ENVIRONMENT
SPORTS
LIFE
PEOPLE
TRAVEL
THIS WEEK
Learning Chinese
Learn to Cook Chinese Dishes
Exchange Rates


Hot Links
China Development Gateway
Chinese Embassies

Manufacturers, Exporters, Wholesalers - Global trade starts here.
Ferny Plant Helps Clean up Polluted Soil

Scientists are looking to the ground in their efforts to fight deadly soil pollution in China.

 

For more than a decade the phytoremediation system which uses plants to help absorb pollutants has become a major part of clean-up programs across the world.

 

By 1998, some 400 natural plants able to absorb materials, such as heavy metals, arsenic or fluoride, had been identified worldwide.

 

But none were indigenous to China.

 

Experts, however, now believe there are several native species that can be used to remove pollutants.

 

One particular ferny plant caught the attention of Chen Tongbin, a senior biologist with the Chinese Academy of Sciences (CAS), eight years ago.

 

Today the plant has become the center of Chen's academic life.

 

Chen, a senior researcher at Beijing-based Institute of Geographical Sciences and Natural Resources Research of CAS, believes that the big-leaf wugongcao (pteris vittata) represents the future of environmental remedy in China.

 

Tests have already showed it can soak up high levels of cancer-causing arsenic materials in soil.

 

"The plant could even create a whole industry to come to the aid of fighting soil pollutions in China," Chen told China Daily.

 

His work is part of intensified efforts to use natural plants to fight pollutions, for which Chen is one of the coordinators.

 

Chemical analysis

 

Experts had tried fruitlessly for several years to find native plants that could help solve oil pollution problems in China.

 

"As a plant remediation researcher, I felt embarrassed," Chen recalled.

 

China has an urgent need to discover plants that can be used for the phytoremediation system.

 

With a sharp increase in industrialization, mining, and the overuse of chemical fertilizers, land pollution has become a major hazard to China's environment and to people's health.

 

Scientists had struggled to introduce foreign species to China, but many native plants withered and died shortly after being planted.

 

But Chen is adamant that native plants, such as wugongcao, already exist in the vast areas of China to fight environmental pollution.

 

"The basic principle of Darwinism is species adapt to their environment, so my eyes fell onto those places with heavy pollution," Chen said.

 

His belief was corroborated by initial field studies in Shimen County of central China's Hunan Province, where the mining industry has existed for more than 1,500 years.

 

Chen himself noticed plants grew robustly in the area,

 

Chemical analysis of the soils and the plants revealed very high concentrations of arsenic, which became a serious problem in a number of areas in China and South Asia in the late 1990s.

 

High levels of arsenic in drinking water and food have caused bone diseases as well as cancers in people living in many rural villages.

 

Before Chen carried out the research, no plant in the world had been found able to hyper-accumulate arsenic to a concentration of more than 1,000 milligrams per kilogram.

 

Chen, however, still had many hurdles to overcome in analyzing the dozens of plants to determine whether at least one was indeed the dream species he was looking for.

 

While the plants growing there might have been able to tolerate arsenic, there were doubts whether they would be able to absorb the toxin extensively from soil. Even if they could, he needed to learn whether they would retain and pass down the characteristic after they were planted in other areas containing arsenic.

 

He also had to discover whether plants could grow in large scales, or whether their biomass would be too small to be effectively planted for the removal of high amounts of pollutants.

 

But, above all, he needed funding to launch major field surveys, soil and plant testing and to screen various varieties of plants.

 

Chen applied for research grants from several State agencies and science foundations in China. Many evaluation experts, according to Chen, would not agree to his proposals, because of their unfamiliarity with the plant remedy theory.

 

"Mainstream scientists in the country at that time neglected such multidisciplinary areas as phytoremediation and the use of plants and trees to remove or neutralize contaminants in polluted soil or water," Chen explained.

 

Many people were doubtful as the idea covers a spectrum of bases, environmental science, biology, ecology, geochemistry, genetics, and traditional and modern seeding, Chen said.

 

Eventually, he managed to get a small grant from a special fund from the National Natural Science Foundation of China, which was set up to support innovative but debated proposals.

 

The work of Chen's team has been difficult, with members having to journey to far-flung places for research.

 

"Sometimes we were stranded in the middle of the wilderness and had to spend the night there," Chen said.

 

Eventually, Chen and his team pinpointed wugongcao in 1998 as being the most effective plant for phytoremediation.

 

"The plant not only lives in high arsenic environment, but also shows high arsenic contents in their bodies. In addition, the offshoots of wugongcao also shows robust growth in high-arsenic soil," Chen said.

 

In recent years, Chen and his colleagues have also identified the plant's biological properties so they can analyze its mechanism in absorbing and cleaning the arsenic pollutants.

 

Their latest research results have secured them more grants to support Chen in expanding his studies into finding other pollutant-fighting plants.

 

So far, Chen's team has identified a total of 16 native Chinese plants able to absorb arsenic, lead, copper, and other heavy metals from soil. In early November 2005, their research passed the evaluation of the Ministry of Science and Technology for the National High Technology Research and Development Programme.

 

Meanwhile, in collaboration with the Institute of High Energy and the Institute of Botany, Chen's team is exploring the genetic basis of wugongcao's mechanism of arsenic hyperaccumulation.

 

Practical tests

 

During their research, Chen and other scientists in his team never lost sight of the need to carry out practical studies of wugongcao.

 

Their chance came after seeing TV reports of the high arsenic pollution in Dengjiatang, a township in Hunan's Chenzhou, which was caused by an arsenic smeltery. As a result of heavy arsenic pollution, two people died and most grain harvested in the area was contaminated. Farmers gathered to protest and demanded the central government severely punish the polluter.

 

"To choose such a place to begin our demonstration of field application helped increase the role of the plant," Chen said.

 

He eventually persuaded local officials to open the area for him and his colleagues to carry out their experiments at Chenzhou.

 

But technical problems remain for the team.

 

The biggest is how to dispose of the wugongcao after it has absorbed pollutants. In the small-scale experiment in labs, this can be done through the infilling of ash of the burned plant into designated places. At practical levels, however, it is currently hard to do.

 

"Our multidisciplinary research team has helped me. One of my PhD students who originally worked in chemical industry has developed a chemical able to collect the arsenic during the incineration," said Chen.

 

"The accumulated arsenic will then become much easier to process."

 

By 2005, the trial program in Chenzhou had achieved success..

 

According to Chen, the arsenic level in the heavily polluted soil has dramatically decreased by half.

 

The cost is at most one-tenth of the chemical cleaning methods of processing the polluted land, said Lei Mei, a researcher in Chen's team.

 

The results are encouraging. The Guangxi Zhuang Autonomous Region has agreed to offer 100 mu (6.7 hectares) for trial plantations of wugongcao and a major State-owned company in Yunnan Province has decided to cooperate with the team to transfer the technology to Yunnan Province, Chen said.

 

A private company in Guangxi is also negotiating with Chen's team to invest tens of millions of yuan in industrializing the technology, according to Chen.

 

(China Daily December 7, 2005)

 

National Probe Launched into Soil Erosion
World Bank Helps Reduce Run-off Soil on Loess Plateau
Economic Policy Must Help Save Environment
Sino-German Laboratory Opens to Promote Study of Soils
China Seeks New Ways to Tackle Soil Erosion
Water and Soil Conservation Bears Fruit
Print This Page
|
Email This Page
About Us SiteMap Feedback
Copyright © China Internet Information Center. All Rights Reserved
E-mail: webmaster@china.org.cn Tel: 86-10-68326688
主站蜘蛛池模板: 欧美一欧美一区二三区性| 精品国产AV无码一区二区三区| 在线精品日韩一区二区三区| 中文字幕亚洲综合久久菠萝蜜| 暖暖在线日本免费中文| 亚洲图片中文字幕| 波多野结衣伦理片| 免费大片av手机看片| 老师让我她我爽了好久网站| 国产小视频在线观看网站| 男女下面一进一出视频在线观看| 在线天堂资源www在线中文| 一区二区三区欧美日韩国产| 探花视频在线看视频| 久久精品99视频| 最近中文字幕电影大全免费版 | 亚洲av无码国产精品麻豆天美| 欧美精品亚洲精品日韩| 亚洲美女精品视频| 男女污污视频在线观看| 啦啦啦中文中国免费高清| 蜜臀AV无码精品人妻色欲| 国产在线xvideos| 国产精品福利尤物youwu| 国产福利萌白酱喷水视频铁牛| 33333在线亚洲| 国产香港日本三级在线观看| 99国产在线播放| 大色皇大久久大久久| bt天堂网...www在线资源| 女偶像私下的y荡生活| 一区二区三区国产最好的精华液 | 十九岁日本电影免费完整版观看 | 最近中文字幕国语免费完整| 亚洲人成人网站在线观看| 欧美夫妇交换完整版随便看| 亚洲欧美日韩小说| 毛片大全免费看| 亚洲精品中文字幕无码蜜桃| 波多野结衣久久| 亚洲精品乱码久久久久久蜜桃|